Category Archives: Publications

Solar disk integration polarimeter: An automateddisk-integration full-Stokes-vector solar feed for thePEPSI spectrograph

We introduce a new solar feed for the PEPSI nighttime spectrograph of the LBT. It enables spectroscopy of the Sun-as-a-star in circular polarization (CP) and linear polarization (LP) with a spectral resolution of 250,000 (≈0.025 Å or 600 m s−1) for the wavelength range 383–907 nm. The polarimeter is a dual-beam design with a modified Wollaston prism as beam splitter and linear polarizer combined with a retractable super-achromatic 𝜆∕4 retarder. The Wollaston beam diameter is 14 mm and large enough that it does not require a classical telescopic feed anymore. Both polarimetric beams are re-imaged into respective integration spheres from which two fibers feed the scrambled light to the spectrograph. The system is fully automated in the sense that it finds the Sun in the morning, closes the guider loop, observes a predefined number of individual spectra, and moves to a home position at the end of the day. Among the scientific aims is Zeeman–Doppler imaging of the Sun as a star over the next activity cycle. Our first-light application detects a clear Stokes-V/I profile with a full amplitude of 1 × 10-4 on, for example, October 13, 2023, suggesting a solar disk-averaged line-of-sight net magnetic field of +0.37±0.02 G. Comparison of this value with a contemporary full-disk line-of-sight magnetogram suggests an unsigned mean field of about ≈13 G.

Full facility close up. (a) CAD sketch. Shown are the polarimeter unit, its PlaneWave alt-az mount, the pier, and the Baader AllSky dome. The light-entrance baffle sticks out of the main polarimeter box and points in the south direction. (b) As built. In this picture the telescope points in the east direction shortly after sunrise. Notice the small circular opening in the box to the top right of the baffle, which is the guider telescope.

Read more: Strassmeier et al. 2024, AN, 345, e240033

Exploring the directly imaged HD 1160 system through spectroscopic characterization and high-cadence variability monitoring

The time variability and spectra of directly imaged companions provide insight into their physical properties and atmospheric dynamics. We find an effective temperature Teff = 2794+115−133 K on the first night, consistent with the literature, but a cooler Teff = 2279+79−157 K on the next. We estimate the mass of HD 1160 B to be 16-81 MJup, depending on its age. We also present R = 50 000 high-resolution optical spectroscopy of host star HD 1160 A obtained simultaneously with the PEPSI spectrograph. We reclassify its spectral type to A1 IV-V and measure its projected rotational velocity vsini = 96+6−4 km s-1. We thus highlight that gvAPP-enabled differential spectrophotometry can achieve repeatable few per cent level precision and does not yet reach a systematic noise floor, suggesting greater precision is achievable with additional data or advanced detrending techniques.

The left panel shows the PEPSI spectrum of the host star HD 1160 A in blue, overplotted with the best-fitting model from BT-Nextgen in orange. The fitting process was carried out for the region of the spectrum covering 392–429 nm. The contour plot in the right panel shows the χ2 distribution for several temperatures and vsini at fixed log(g) of 3.5.

Read more: Sutlieff et al. 2024, MNRAS, 531, 2168

The PEPSI Exoplanet Transit Survey (PETS) – V. New Na D transmission spectra indicate a quieter atmosphere on HD 189733b

Absorption lines from exoplanet atmospheres observed in transmission allow us to study atmospheric characteristics such as winds. We present a new high-resolution transit time-series of HD 189733b, acquired with the PEPSI instrument at the LBT and analyse the transmission spectrum around the Na D lines. We model the spectral signature of the RM-CLV-effect using synthetic PHOENIX spectra based on spherical LTE atmospheric models. We find an Na D absorption signature between the second and third contact but not during the ingress and egress phases, which casts doubt on the planetary origin of the signal. Presupposing a planetary origin of the signal, the results suggest a weak day-to-nightside streaming wind in the order of 0.7 km/s and a moderate super-rotational streaming wind in the order of 3-4 km/s, challenging claims of prevailing strong winds on HD 189733b.

The HD 189733b transit observation. Top: Continuum signal-to-noise ratio per combined pixel (95 per cent quantile). Bottom: The RM effect. Dashed vertical lines show the contact points 1st–4th (cyan) and 2nd–3rd (purple).

Read more: Keles et al. 2024, MNRAS, 530, 4826

Testing pulsation diagnostics in the rapidly oscillating magnetic Ap star gamma Equ

Pulsations of rapidly oscillating Ap stars and their interaction with the stellar magnetic field have not been studied in the near-infrared (near-IR) region despite the benefits these observations offer compared to visual wavelengths. The main advantage of the near-IR is the quadratic dependence of the Zeeman effect on the wavelength, as opposed to the linear dependence of the Doppler effect.

To test pulsation diagnostics of roAp stars in the near-IR, we investigated the pulsation behaviour of one of the brightest magnetic roAp stars, γ Equ, which possesses a strong surface magnetic field of the order of several kilogauss and exhibits magnetically split spectral lines in its spectra.

The profile shapes of both studied magnetically split spectral lines in H-band vary in a rather complex manner probably due to a significant decrease in the strength of the longitudinal field component and an increase in the strength of the transverse field components over the last decade. A mean magnetic field modulus of 3.9 kG was determined for the Zeeman triplet Fe I at 1563.63 nm, whereas for the pseudo- doublet Ce III at 1629.2 nm we observe a much lower value of only about 2.9 kG. For comparison, a mean field modulus of 3.4 kG was determined using the Zeeman doublet Fe II at 6249.25 Å in optical PEPSI spectra recorded just about two weeks before the 2022 CRIRES+ observations. Different effects may lead to the differences in the field modulus values. The measurements of the mean magnetic field modulus in different pulsational phase bins suggest a field modulus variability of 32 G for the Zeeman triplet Fe I and 102 G for the pseudo-doublet Ce III.

Zeeman doublet Fe II at 6149.25 Å used for measuring the mean magnetic field modulus in observations obtained in different years using different instruments. Right: Comparison of the shape of line profiles of Zeeman triplet Fe I 1563.63 nm from different years in near-IR region.

Read more: Järvinen et al. 2024, A&A 683, A66

Weakened Magnetic Braking in the Exoplanet Host Star 51 Peg

The consistently low activity level of the old solar analog 51 Peg not only facilitated the discovery of the first hot Jupiter, but also led to the suggestion that the star could be experiencing a magnetic grand minimum. However, the 50 yr time series showing minimal chromospheric variability could also be associated with the onset of weakened magnetic braking (WMB), where sufficiently slow rotation disrupts cycling activity and the production of large scale magnetic fields by the stellar dynamo, thereby shrinking the Alfvén radius and inhibiting the efficient loss of angular momentum to magnetized stellar winds. In this Letter, we evaluate the magnetic evolutionary state of 51 Peg by estimating its wind braking torque. We use new spectropolarimetric measurements from the Large Binocular Telescope to reconstruct the large-scale magnetic morphology, we reanalyze archival X-ray measurements to estimate the mass-loss rate, and we detect solar-like oscillations in photometry from the Transiting Exoplanet Survey Satellite, yielding precise stellar properties from asteroseismology. Our estimate of the wind braking torque for 51 Peg clearly places it in the WMB regime, driven by changes in the mass-loss rate and the magnetic field strength and morphology that substantially exceed theoretical expectations. Although our revised stellar properties have minimal consequences for the characterization of the exoplanet, they have interesting implications for the current space weather environment of the system.

ZDI maps of the radial, meridional, and azimuthal field components of 51 Peg. Contours are shown with a step of 0.5 G. The dotted line corresponds to the lowest visible latitude. The vertical bars at the bottom of each panel show the central longitude of each LBT observation.

Read more: Metcalfe, T., Strassmeier, K. G., Ilyin, I. V. et al. 2024, ApJ 960, L6

AIP press release: link

LBTO news: link

The PEPSI Exoplanet Transit Survey (PETS) IV: Assessing the atmospheric chemistry of KELT-20b

Most ultra hot Jupiters (UHJs) show evidence of temperature inversions, in which temperature increases with altitude over a range of pressures. Temperature inversions can occur when there is a species that absorbs the stellar irradiation at a relatively high level of the atmospheres. However, the species responsible for this absorption remains unidentified. In particular, the UHJ KELT-20b is known to have a temperature inversion. Using high resolution emission spectroscopy from LBT/PEPSI we investigate the atomic and molecular opacity sources that may cause the inversion in KELT-20b, as well as explore its atmospheric chemistry. We confirm the presence of Fe I with a significance of 17𝜎. We also report a tentative 4.3𝜎 detection of Ni I. A nominally 4.5𝜎 detection of Mg I emission in the PEPSI blue arm is likely in fact due to aliasing between the Mg I cross-correlation template and the Fe I lines present in the spectrum. We cannot reproduce a recent detection of Cr I, while we do not have the wavelength coverage to robustly test past detections of Fe II and Si I. Together with non-detections of molecular species like TiO, this suggests that Fe I is likely to be the dominant optical opacity source in the dayside atmosphere of KELT-20b and may be responsible for the temperature inversion. We explore ways to reconcile the differences between our results and those in literature and point to future paths to understand atmospheric variability.

Shifted and combined cross correlation function (CCF, left) and injection-recovery test (right) for Ni I. This 4.3𝜎 detection falls within our tentative detection range. The vertical and horizontal dashed lines in all CCF maps represent the 𝐾𝑝 (radial velocity semi amplitude of the planet) and 𝑣𝑠𝑦𝑠 (system radial velocity) parameters for which we should expect to find a signal.

Read more: Petz, S., Johnson, M., Asnodkar, A. P. et al. 2023, MNRAS, in press  (arXiv:2301.09352)

Asteroseismology and Spectropolarimetry of the Exoplanet Host Star lambda Serpentis

The bright star lam Ser hosts a hot Neptune with a minimum mass of 13.6 MEarth and a 15.5 day orbit. It also appears to be a solar analog, with a mean rotation period of 25.8 days and surface differential rotation very similar to the Sun. We detect solar-like oscillations in time series photometry from the Transiting Exoplanet Survey Satellite (TESS), and we derive precise asteroseismic properties from detailed modeling. We obtain new spectropolarimetric data, and we use them to reconstruct the large-scale magnetic field morphology. We reanalyze the complete time series of chromospheric activity measurements from the Mount Wilson Observatory, and we present new X-ray and ultraviolet observations from the Chandra and Hubble space telescopes. Finally, we use the updated observational constraints to assess the rotational history of the star and to estimate the wind braking torque. We conclude that the remaining uncertainty on stellar age currently prevents an unambiguous interpretation of the properties of lam Ser, and that the rate of angular momentum loss appears to be higher than for other stars with similar Rossby number. Future asteroseismic observations may help to improve the precision of the stellar age.

Stokes V polarization profile for lam Ser from PEPSI/LBT observations on 2021 May 24. The mean profile is shown as a black line, with uncertainties indicated by the gray shaded area. The red and blue lines are model profiles assuming dipole geometry and fixed inclination i = 50 degrees with different obliquity angles beta.

Read more: Metcalfe et al. 2023, AJ, in press (arXiv 2308.09808).

Searching for magnetic fields in pulsating A-type stars

Numerous δ Sct and γ Dor pulsators are identified in the region of the Hertzsprung-Russell diagram that is occupied by chemically peculiar magnetic Ap stars. The connection between δ Sct and γ Dor pulsations and the magnetic field in Ap stars is however not clear: theory suggests for magnetic Ap stars some critical field strengths for pulsation mode suppression by computing the magnetic damping effect for selected p and g modes. To test these theoretical considerations, we obtained PEPSI spectropolarimetric snapshots of the typical Ap star HD 340577, for which δ Sct- like pulsations were recently detected in TESS data, and the γ Dor pulsator HR 8799, which is a remarkable system with multiple planets and two debris disks. Our measurements reveal the presence of a magnetic field with a strength of several hundred Gauss in HD 340577. The measured mean longitudinal field would be the strongest field measured so far in a δ Sct star if the pulsational character of HD 340577 is confirmed spectroscopically. No magnetic field is detected in HR 8799.

LSD Stokes I, V, and diagnostic null N spectra (from bottom to top) calculated for HD340577, for the mask with all lines and the masks for individual ions. The numbers in brackets relate to the number of lines used in each individual mask. The grey horizontal lines in the Stokes V and N spectra indicate the ±1σ error bars. Stokes V spectra are highlighted in red.

Read more: Hubrig et al. 2023, MNRAS 526, L83; arXiv 2308.09441

Zeeman Doppler Imaging of ksi Boo A and B

A magnetic-field surface map for both stellar components of the young visual binary ksi Boo AB (A: G8V, B: K5V) is presented. Employed are high resolution Stokes-V spectra obtained with the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT). Stokes V line profiles are inverted with our iMAP software and compared to previous inversions. We employed an iterative regularization scheme without the need of a penalty function and incorporated a three-component description of the surface magnetic-field vector. The spectral resolution of our data is 130,000 (0.040-0.055A) and have signal-to-noise ratios (S/N) of up to three thousand per pixel depending on wavelength. A singular-value decomposition (SVD) of a total of 1811 spectral lines is employed for averaging Stokes-V profiles. Our mapping is accompanied by a residual bootstrap error analysis. Magnetic flux densities of the radial field component of up to plus/minus 115 ± 5 G were reconstructed for ksi Boo A while up to plus/minus 55 ± 3G were reconstructed for ksi Boo B. ksi Boo A’s magnetic morphology is characterized by a very high latitude, nearly polar, spot of negative polarity and three low-to-mid latitude spots of positive polarity while ksi Boo B’s morphology is characterized by four low-to-mid latitude spots of mixed polarity. No polar magnetic field is reconstructed for the cooler ksi Boo B star. Both our maps are dominated by the radial field component, containing 86 and 89 percent of the magnetic energy of ksi Boo A and B, respectively. We found only weak azimuthal and meridional field densities on both stars (plus/minus 15-30 G), about a factor two weaker than what was seen previously for ksi Boo A. The phase averaged longitudinal field component and dispersion is +4.5 ± 1.5G for ksi Boo A and -5.0 ± 3.0 G for ksi Boo B.

Representative PEPSI spectra used in the study (panel a). Zeeman-Doppler images of ξ Boo A (panel b) and ξ Boo B (panel c) in orthographic projection. φ is the rotational phase. Magnetic field strength is color coded and identified in the right bars in units of Gauss. Positive polarity is depicted in red, negative polarity in blue. The length of the surface dashes is proportional to field strength.

Read more: K. G. Strassmeier, T. A. Carroll, & I. V. Ilyin 2023, A&A, 674, 118; (arXiv 2305.07470)

Constraints on Magnetic Braking from the G8 Dwarf Stars 61 UMa and Tau Cet

During the first half of their main-sequence lifetimes, stars rapidly lose angular momentum to their magnetized winds, a process known as magnetic braking. Recent observations suggest a substantial decrease in the magnetic braking efficiency when stars reach a critical value of the Rossby number, the stellar rotation period normalized by the convective overturn timescale. Cooler stars have deeper convection zones with longer overturn times, reaching this critical Rossby number at slower rotation rates. The nature and timing of the transition to weakened magnetic braking has previously been constrained by several solar analogs and two slightly hotter stars. In this Letter, we derive the first direct constraints from stars cooler than the Sun. We present new spectropolarimetry of the old G8 dwarf τ Cet from the Large Binocular Telescope, and we reanalyze a published Zeeman Doppler image of the younger G8 star 61 UMa, yielding the large-scale magnetic field strengths and morphologies. We estimate mass-loss rates using archival X-ray observations and inferences from Lyα measurements, and we adopt other stellar properties from asteroseismology and spectral energy distribution fitting. The resulting calculations of the wind braking torque demonstrate that the rate of angular momentum loss drops by a factor of 300 between the ages of these two stars (1.4–9 Gyr), well above theoretical expectations. We summarize the available data to help constrain the value of the critical Rossby number, and we identify a new signature of the long-period detection edge in recent measurements from the Kepler mission.

Stokes V polarization profile for τ Cet from LBT observations on 2022 September 18. The mean profile is shown as a black line with uncertainties indicated by the gray shaded area. The dashed blue line is an axisymmetric model profile assuming dipole morphology with the inclination fixed at i = 20 deg.

Read more: Metcalfe, T., Strassmeier, K., Ilyin, I., et al. 2023, ApJ Letters, in press (arXiv:2304.09896)