High Resolution Optical Spectroscopy of the Classical Nova V5668 Sgr Showing the Presence of Lithium

The classical nova (CN) V5668 Sgr was discovered on 2015 March 15.634 and initial optical spectra implied it was an Fe II-class CN. We obtained high resolution optical spectroscopy on 30 nights between 2015 April 3 and 2016 June 5 with the 2 x 8.4 m Large Binocular Telescope (LBT) and the 1.8 m Vatican Advanced Technology Telescope (VATT) using the Potsdam Echelle Polarimetric Spectroscopic Instrument (PEPSI). The spectra cover all or part of the 3830-9065 Å spectral region at a spectral resolution of up to 270,000 (1 km/s); the highest resolution currently available on any 8-10 m class telescope. The early spectra are dominated by emission lines of the Balmer and Paschen series of hydrogen, Fe II, Ca II, and Na I with P Cyg-type line profiles as well as emission lines of [O I]. Numerous interstellar lines and bands are readily apparent at high spectral resolution. The permitted line profiles show complex and dramatic variations in the multi-component P Cyg-type line profiles with time. We detect a weak blue-shifted absorption line at a velocity consistent with Li I 6708 Å when compared with the line profiles of Hβ, Fe II 5169 Å, and Na I D. This line is present in spectra obtained on 7 of 8 consecutive nights up to day 21 of the outburst; but absent on day 42 when it is evident that the ionization of the ejecta has significantly increased. The equivalent width of the line converted to a column density, and the resulting mass fraction, imply a significant enrichment of 7Li in the ejecta. 7Li is produced by the decay of unstable 7Be created during the thermonuclear runaway. The discovery of the resonance lines of 7Be II in the optical spectra of the recent CNe V339 Del, V2944 Oph, and V5668 Sgr by Tajitsu et al. (2016) and its subsequent decay to 7Li (half life of 53 days) suggests a significant enrichment of 7Li in the Galaxy from CNe is possible. Our observations of the Li I 6708 Å line in the early optical spectra of V5668 Sgr mark the second direct detection of Li in a CN following the detection of Li I in the early optical spectra of V1369 Cen by Izzo et al. (2015).

Read more: PDF

Publication:  Wagner, R. Mark; Woodward, Charles E.; Starrfield, Sumner; Ilyin, Ilya; Strassmeier, Klaus
American Astronomical Society, AAS Meeting #231, id. 358.10

News from the mountain: Open-shutter record at LBTO

During the first use of PEPSI-POL for science, we achieved a shutter-open-time of 91% during the night October 13/14, 2017. “Open-shutter time” is the time when photons are being collected on an instrument’s detector for later scientific use. As far as we know this is by far the highest at LBTO so far. The total available observing time from twilight to twilight on October 13/14 was 9 hours and 42 minutes of which 8 hours and 50 minutes were used to expose five different targets.

More pictures are here:

Posters presented at the 2nd LBT users meeting in Florence on June 20-23, 2017.

Polarimeters saw first light, LBT gets polarized

The installation of PEPSI at the LBT was completed on September 6th when both its polarimeters were mounted in the straight foci of the LBT. During the night of September 10, 2017 the telescope was pointed to the magnetic standard star gamma Equ and a series of integrations in circularly and linearly polarized light were obtained. These spectra have a spectral resolution of R=120,000, covered four wavelength regions in the optical (two always simultaneously) and reached a S/N ratio of up to 600:1 in 6 min integrations. The telescope was just tracking and not guiding yet nor were the wavefront sensors actively collimating the telescopes. The image quality was controlled by eye (by John Hill remotly from Tucson). Because the polarimeters for each of the LBT telescopes are identical and modular in design, circular and linear polarization may be obtained simultaneously. We used the SX side for circular and the DX side for linear polarization. A total of 12 exposures were obtained.

Image gallery

Partial solar eclipse observed by SDI

August 21, 2017. The partial solar eclipse was observed at Mt.Graham in Arizona remotely from AIP with the Solar Disk Integrated Telescope (SDI) which guides on the Sun and feeds the light into the PEPSI high-resolution spectrograph in the pier of the LBT telescope. The partial eclipse began on 09:16 MST and ended at 12:03 MST.

One hundred spectra were obtained during the course of the eclipse in two wavelength regions 422-477 and 536-628 nm with the resolving power 270 000 (1100 m/s in radial velocity per resolution element). The spectra obtained are highly dynamic as the area of the line formation changes, hence, the shape of the lines is slightly alternating. We perform analysis of the Sodium D1 line 589.59 nm which is formed in the lower chromosphere of the Sun above 500 km of its photosphere. Its bisector (i.e. the central wavelength at different depths of the line profile) shows large changes in the line core which is formed in the higher chromospheric layers.

Lithium in the active sub-giant HD123351. A quantitative analysis with 3D and 1D model atmospheres using different observed spectra

Here we present a spectroscopic comparative analysis of the Li doublet region of HD 123351, an active sub-giant star of solar metallicity. We fit the Li profile in three observed spectra characterized by different qualities: two very-high resolution spectra (Gecko@CFHT, R=120 000, SNR=400 and PEPSI@LBT, R=150 000, SNR=663) and a high-resolution SOPHIE@OHP spectrum (R=40 000, SNR=300). We adopt a set of model atmospheres, both 3D and 1D, having different stellar parameters (T_{eff} and log g). The 3D models are taken from the CIFIST grid of COBOLD model atmospheres and departures from LTE are considered for the lithium components. For the blends other than the lithium in this wavelength region we adopt the linelist of Melendez et al. (2012, A&A, 543, 29). We find consistent results for all three observations and an overall good fit with the selected list of atomic and molecular lines, indicating a high 6Li content.

The presence of 6Li is not expected in cool stellar atmospheres. Its detection is of crucial importance for understanding mixing processes in stars and external lithium production mechanisms, possibly related to stellar activity or planetray accretion of 6Li-rich material.

Comparison of observed spectra of the Li doublet region of HD 123351 around 670.8 nm. The Gecko (blue dotted line), SOPHIE (red dashed line) and PEPSI (green dashed-dotted line) spectra are superimposed on the Solar flux atlas by Kurucz (2005) (black continuous line) for a comparison. The locations of the Li I components and the dominant blends attributed to Fe  and CN are also indicated.

 

Read more:  Mott, Steffen, Caffau, & Strassmeier 2017, MemSAI 88, 68